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Abstracr We study the critical properties of the weakly disordered p-component random 
Heisenberg ferromagnet. It is shown that if the specific-heat critical exponent of the pure 
system is positive, the traditional renormalization group (nc) Rows at dimensions D = 4 - e. 
which are usually considered as describing the disorder-induced universal critical behaviour, are 
unslnble with respect to replica-symmeuy breaking (rise) potentials such as those found in spin 
glasses. It is demonstrated that the RG flows involving RSB potentials lead IO fixed points which 
have a svuaure known as the one-slep RSB, and there exias a whole spectrum of such fixed 
points. It is argued lhal spontaneous RSB can occur due Lo lhe intemtions of h Auctuating 
fields with the local non-perturbalive degrees of freedom coming from the multiple local minima 
solutions of the mean-field equalions. However, it U not c l w  whether or not nSB occurs for 
infilutesimally weak disorder. Physical consequences of these conclusions r e  discussed. 

Landau lnaitute for Theoretical Physics, Russian Academy of Sciences. Moscow, Russia 

1. Introduction 

It has been many years since the effects produced by weak quenched disorder on critical 
phenomena were considered to be qualitatively understood. In the most general terms the 
traditional point of view could be summarized as follows. 

If the disorder is weak (e.g. the concentration of impurities is small), its effect on the 
critical behaviour in the vicinity of the phase transition point T, remains negligible so long 
as the correlation length R, is not too large, i.e. for temperatures T not too close to T,. 
In this regime the critical behaviour will be essentially the same as in the pure system. 
However, as T = (T - Tc)/Tc + 0 and R,(r)  becomes larger than the average distance 
between impurities, their influence can become crucial. 

As T, is approached the following change of length scale takes place. First, the 
correlation length of the fluctuations becomes much larger than the lattice spacing (which 
we take to be unity), and the system 'forgets' about the lattice. The only relevant scale 
that remains in the system in this regime is the correlation length R,(s). Then, in the close 
vicinity of the critical point, R, grows and becomes larger than the average distance between 
the impurities, so that the effective concentration of impurities, measured with respect to 
the correlation length, becomes large. Such a situation is reached for an arbitrarily small 
concenvation U of impurities. The strength of disorder, as scaled by U, affects only the 
width of the temperature region near T, in which the effective concentration gets large. 
If uRP >> 1, where D is the spatial dimensionality, one has no grounds, in general, for 
believing that the effect of impurities will be small. 

0305.4470/95/113093+15$19.50 @ 1995 1OP Publishing Ltd 3093 
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A very simple general criterion has been discovered, the so-called Harris criterion [ 11, 
which makes it possible to predict the effect of impurities qualitatively from only the critical 
exponents of the pure system. According to this criterion the impurities change the critical 
behaviour only if CY, the specific heat exponent of the pure system, is greater than zero 
(i.e. the specific heat of the pure system is divergent at the critical point); more properly, 
this criterion should be stated as Du > 2, where U is the correlation length exponent. 
According to the traditional point of view, when this criterion is satisfied, a new universal 
critical behaviour, with new critical exponents, is established sufficiently close to the phase 
transition point [Z, 31. These new exponents were found to satisfy the opposite criterion 
(i.e. LY was negative) and were therefore apparently stable. In contrast, when CY < 0 (the 
specific heat is finite), the impurities appear to be irrelevant, i.e. their presence does not 
affect the critical behaviour. 

We now consider this point in more detail. Near the phase transition point the D- 
dimensional Ising-like systems can be described in terms of the scalar field Ginsburg-Landau 
Hamiltonian with a double-well potential: 

H = /dDx[i(V@(x))2 + $ [ 7  - S s ( x ) l C 2 ( x )  + :gq5'(x)]. (1.1) 

Here the quenched disorder is described by random fluctuations of the effective transition 
temperature Ss(x)  whose probability distribution is taken to be symmetric and Gaussian: 

where U << 1 is the small parameter which describes the disorder, and po is the normalization 
constant. In equation (1.1) r - (T - Tc) and for notational simplicity, we define the sign 
of 8?(x )  so that positive fluctuations lead to locally ordered regions, whose effects are the 
object of our study. 

Configurations of the fields @ ( x )  which correspond to local minima in H satisfy the 
saddle-point equation: 

(1.3) - A@@) + 7 @ ( x )  + gC3(x)  = J7(x)@(x). 
Such localized solutions exist in regions of space where T -Sr(x) assumes negative values. 
Clearly, the solutions of (1.3) depend on a particular configuration of the function Sr(x )  
being inhomogeneous. Let us estimate under which conditions the quenched fluctuations 
of the effective transition temperature are the dominant factor for the local minima field 
configurations. 

Let us consider a large region BL of a linear size L >> 1. The spatially average value 
of the function 8 7 ( x )  in this region could be defined as follows: 

Correspondingly, for the characteristic value of the temperature fluctuations (averaged over 
realizations) in this region one gets 

(1.5) 

Then, the average value of the order parameter @(a,) in this region can be estimated from 
the equation 

(1.6) + 7 + g@* = sr(nL).  
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One can easily see that if the value of r is sufficiently small, i.e. if 

6 r ( W  >> r (1.7) 
then the solutions of (1.6) are defined only by the value of the random temperature: 

Now let us estimate up to which sizes of locally ordered regions this may occur. According 
to (1.5) the condition Srr > r yields 

On the other hand, the estimation of the order parameter in terms of the saddle-point equation 
(1.6) could be correct only at scales much larger than the correlation length R, - r-”. Thus, 
one has the lower bound for L :  

L >> r-’. (1.10) 

Therefore, quenched temperature fluctuations are relevant when 

(1.11) 

or 
T 2 - v D  < U .  (1.12) 

According to the scaling relations, one has 2 - v D  = a. Thus one recovers the Harris 
criterion: if the specific heat of the pure system is positive, then in the temperature interval 

(1.13) 
the disorder becomes relevant. This argument identifies l/a as the cross-over exponent 
associated with randomness 141. 

The above considerations also demonstrate~another very important point: in the disorder- 
dominated region one finds a macroscopic number of local minimum solutions of the saddle- 
point equation (1.3). Indeed, for a given realization of the random function sr (x)  there 
exists a macroscopic number of spatial ‘islands’ where T - Ss(x) is negative (so that the 
local effective temperature is below Tc), and in each of these ‘islands’ one finds two local 
minimum configurations of the field: one which is ‘up’, and another which is ‘down’, as 
indicated in (1.8). These local minimal energy configurations are separated by finite energy 
baniers, whose heights become larger as the size of the ‘islands’ are increased. 

Now, if one is interested in the critical properties of the system. one has to integrate 
over all local-field configurations up to the scale of the correlation length. This type of 
calculation is usually performed using a renormalization-group (RG) scheme, which self- 
consistently takes into account all the fluctuations of the field on length scales up to R,. 

The point, however, is that the traditional RG approach is only a perturbative theory 
(albeit a powerful one) in which one treats the deviations of the field around the ground- 
state configuration, and it cannot take into account other local minimum configurations 
which are ‘beyond baniers’. This problem does not arise in the pure systems, where the 
solution of the saddle-point equation is unique. However, in a situation like that discussed 
above, when one gets numerous local minimum configurations separated by finite barriers, 
the direct application of the traditional RG scheme may be questioned. 

In a systematic approach one would like to integrate in an RG way over fluctuations 
around the local minima configurations. Furthermore, one also has to sum over all these 

r < T~ 5 u‘i‘ 
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local minima up to the scale of the correlation length. In view of the fact that the local 
minima configurations are defined by the random quenched function & r ( x )  in an essentially 
non-local way, the possibility of successfully implementing such a systematic approach 
seems rather hopeless. 

On the other hand there exists another technique which has been developed specifically 
for dealing with systems which exhibit numerous local minima states. It is the Parisi replica- 
symmetry breaking (RSB) scheme which has proved to be essential in the mean-field theory 
of spin glasses (see, e.g. [51). Recent studies show that in certain cases the RSB approach 
can also he generalized for situations where one also has to deal with fluctuations [6-81. 

In this paper we are going to study the critical properties of weakly disordered systems 
in terms of the RG approach generalized to take into account the possibility of the RSB 
phenomena The model we will treat is the ferromagnetic O(n) or Heisenberg model 
with weak random interactions. The idea is that hopefully, as in spin glasses, this type 
of generalized RG scheme self-consistently takes into account relevant degrees of freedom 
coming from the numerous local minima. In particular, the instability of the traditional 
replica-symmetric (RS) fixed points with respect to RSB indicates that the multiplicity of the 
local minima can be relevant for the critical properties in the fluctuation region. 

It will be shown in the next section that, whenever the disorder appears to be relevant 
for the critical behaviour (in accordance with the Harris criterion), the usual RS fixed points 
(which used to be considered as providing new universal disorder-induced critical exponents) 
are unstable with respect to 'turning on' an RSB potential. In the presence of such a potential 
the RG flows actually go to another type of fixed point having a structure known as a one- 
step RSB. The one-step RSB structure is described by one parameter xo (0 < xo c I), which 
is the coordinate of Ihe RSB step, and this parameter remains arbitrary within the framework 
of the RG scheme. Therefore, within the framework of the formal RG consideration one 
finds a whole line of fixed points (instead of the unique fixed point in the RS subspace), and 
correspondingly one obtains a whole spectrum of critical exponents. 

Formally, the value of the parameter xo at the fixed point is defined by the 'initial 
conditions' for the RG equations. This situation is qualitatively different from the traditional 
RS one, where the fixed point appears to be universal, and does not depend on the details of 
the starting values of the parameters of the Hamiltonian. Here, the existence of such RSB 
fixed points indicates that the actual values of the critical exponents could be non-universal, 
being dependent on the concrete characteristics of the disorder involved. 

In section 3 we discuss the problem of the 'initial conditions' for the RG calculations 
in more deta'l. The crucial problem for the present approach is to understand whether 
RSB is inherent in the random bond model or not. If, for instance, RSB does not occur 
spontaneously for the weakly random bond Heisenberg model, then one remains in the 
replica-symmetric subspace of potentials and the traditional approach [2, 31 is probably 
valid. In contrast, it might be that disorder is always accompanied by a small amount of 
RSB. In that case, critical exponents, amplitude ratios and the like, would be determined 
by the RSB fixed point we find here. Based on general physical arguments we propose 
a mechanism whereby the multiple local minimum solutions discussed above can provide 
RSB interactions between the fluctuating fields. It is argued that to sum over all the local 
degrees of freedom, one has to sum over discrete local minima solutions first, and then 
one could initiate the RG integrations over the fluctuating fields. The point is that the 
fluctuating fields themselves are the deviations from the local minimum configurations, 
and that is why the summation over these quenched discrete degrees of freedom (together 
with the replica averaging over the quenched disorder) could provide additional non-trivial 
interactions among the fluctuating fields. According to the arguments presented in this 
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section, the partition function which describes these interactions is analogous to that of 
the random energy model (REM) of Denida 1121. Using the known results [12] for the 
REM, it then follows that if the interaction, VL-P between local solutions and perturbative 
fluctuations exceeds a critical strength, replica symmetry will be broken. Thus, we identify 
a scenario for obtaining spontaneous RSB from a random spin model. However, it remains 
an open question whether. when the bond randomness is arbitrarily weak, the interaction 
V k p  exceeds the critical strength necessary for RSB. If so, the analogous REM has the one- 
step RSB structure and the value of the coordinate of the step xo is defined by the concrete 
statistical characteristics of the disorder involved. 

The remaining problems as well as future perspectives are discussed in the conclusions. 

2. The renormalization-group and replica-symmetry breaking 

We consider the p-component @4 theory with quenched random effective temperature 
fluctuations, which near the transition point can be described by the usual Ginzburg-Landau 
Hamiltonian: 

(2.1) 

where the quenched potential Sr(x) is distributed according to (1.2). In terms of the standard 
replica approach one has to calculate the following replica partition function: 

Z, = (/D@;(x)exp{-H[Gr,@l] = DSrP[Srl  D@i(x)exp{-H[Sr,@]] >’ s (S 

where the superscript U labels the replicas. (Here and in what follows all irrelevant pre- 
exponential factors are omitted.) After Gaussian integration over 8r(x)  one gets 

where 

gob = g&b - U .  (2.4) 

To study the critical properties of this system we are going to apply the standard RC 
procedure developed for dimensions D = 4 - E ,  where E << 1. Along the lines of the 
usual rescaling scheme (see, e.g. [91) one gets the following RG equations for the interaction 
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parameters gob: 

where 6 is the standard rescaling parameter. 
If one takes the matix gab to be replica symmetric, as in the starting form of (2.4), then 

one would recover the usual RG equations for the parameters g and U, and eventually one 
would obtain the well known results for the fixed points and the critical exponents [2, 31. 
Here, however, we are going to study the stability of the RG flows with respect to RSB in 
the matrix &b. We leave the question as to how perturbations out of the RS subspace could 
arise until the next section, and formally consider the RG equation (2.5) assuming that the 
matrix gab has a Parisi RSB structure (which also includes the RS structure as a special case). 

According to the standard technique of the Parisi RSB algebra (see, for example, 
[ S ,  6, lo]), in the b i t  n + 0 the matrix gob is parametrized in terms of its diagonal 
element and the off-diagonalfiinction g(x) defined in the interval 0 < x < 1: 

gob --f (2; g(x) ) .  (2.6) 
The RS situation corresponds to the case g ( x )  = constant independent of x .  A11 the 
operations with the matrices in this algebra can be performed according to the following 
simple rules: 

(2.7) 

where 

(2.10) 

The usual RS equations are recovered if one takes g ( x ;  6 )  g(t) independent of x .  
Then, for the fixed point, “g(x )  = 0, 45 = 0 one obtains the following equations: * 

(2.12) 

(2.13) 
1 

i - (8 + p)i2 + p /  dyg2Cy) = 0. 
0 
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It is interesting to note that the structure of (2.12) is similar to that for the Parisi function 
q ( x )  near T, in the SK model of spin glasses (SG). Although the cubic terms in the ‘order- 
parameter’ function g ( x )  are not included here, they could be calculated in the next order 
of the loop expansion of the RG. The most essential difference from the situation in the SK 
spin glasses is the presence of the term g z ( x )  in (2.12) (there is no such term in the SK 
model). This is the typical term which is known to produce one-step RSB in other SG-like 
systems [l 11, and in this case the higher-order terms produce no qualitative change in the 
results. 

From equations (2.12) and (2.13) one can easily find out what the structure of the 
function g ( x )  should be at the fixed point. Taking the derivative over x twice, one gets, 
from (2.12): g ’ ( x )  = 0. This means that either the function g ( x )  is constant (which is the 
RS situation), or it has a step-like structure. 

Let us consider the simplest ansatz, which is the one-step RSB (later we are going to 
argue, that there are no many-step fixed points). Thus we assume that 

(2.14) 

where 0 < xo < 1 is the coordinate of the step. 
Then, from (2.12) and (2.13) one gets three equations for three parameters 2,  go and gl: 

(4 - 2PnO)g; - 2 P ( l  - x 0 ) y o  + (4 + 2P)&O = go 
-pxog;  + (4 - 2P + pxo)g ,  + (4 + 2p)Hgl = gl 
-pxog; - p(1 - xo)g: + (8 + p ) g  - g. 

(2.15) 
-2 - - 

Note again, that for go = gl one obtains the usual RS fixed point equations, and the parameter 
xo drops out from the equations. 

Equations (2.15) have several solutions. Among them there are two fixed points which 
are the usual RS ones [2, 31: 

- 1  
go=g1=0 g=- 

8 + P  
and 

(2.16) 

(2.17) 

The first of these corresponds to the pure system, and is stable when the disorder 
is irrelevant according to the Harris criterion. The disorder-induced fixed point (2.17) is 
usually considered to be the one which describes the new universal critical behaviour in 
systems with impurities. This fixed point has been shown to be stable (with respect to the 
RS deviations!) for p < 4, which is consistent with the Harris criterion since the specific 
heat critical exponent associated with this fixed point is negative and that associated with 
the pure system fixed point is positive. (For p = 1 this fixed point involves an expansion 
in powers of (E)’’’ [3]. This structure is only revealed within a two-loop approximation 
and was therefore not located in the early work [2].) 

However, besides these two RS fixed points there exist the following two non-trivial 
one-step solutions with go # gl: 

(2.18) 
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and 
4-P 

go=o g1=- 

- p(1 - xo) 
(2.19) - 1) - PO@ + P) 

= 16(p - 1) - pxo(8 -t p )  ’ 
The stability analysis for the above fixed points with respect to general RSB deviations 

would appear to be technically a rather difficult problem, but one can easily check the 
stability within the considered one-step RSB subspace. The calculations, although a bit 
cumbersome, are straightforward. One has to linearize the ‘dynamical’ equations (2.10) 
near a given fixed point, and then one has to find the eigenvalues. The fixed point is stable 
only if all three eigenvalues are negative. We omit this purely technical analysis and report 
the results only. The pure system fixed point (2.16) appezs to stable (in accordance with 
the Harris criterion) for p > 4, when the pure system specific-heat critical exponent is 
negative. 

The three 
eigenvalues of the linearized equations are: 11 = -4.12 = -k& and 1, = +e. 
The instability appears just due to the possibility of creating a ‘step’. 

The first one-step RSB fixed point (2.18) appears to be stable in the region of parameters: 
1 e pxo < 4. 

Finally, the second one-step RSB fixed point (2.19) is stable for 

The traditional RS fixed point (2.17) appears to be always unsrable. 
8cP-i) 

(2.20) 

In particular, x , (p  =,2) = 4 and xc(p  = 3) = (while x , (p  = 4) = 1). 
Note, that in addition to the fixed points listed above there exist several other one-step 

RSB solutions of (2.15) which we do not reproduce here because they are always unstable. 
Actually the ‘physical’ fixed point is that in (2.19) (with the stability conditions (2.20)). 

and not that in (2.18). which has to be considered as ‘unphysical’. The point is that according 
to the arguments which will be presented in the next section, whenever the RSB perturbation 
comes into play, it always requires (according to its physical origin) that gl < go. On the 
other hand, simple numerical solution of the evolution equations (2.10) clearly demonstrates 
that if the initial values of the parameters are bounded such that gI -= go, then, whatever 
the actual starting values of the parameters are, one always ends up at the fixed point (2.19) 
and not (2.18). In the opposite case, gl go, the RG trajectories always go to the fixed 
point (2.18), but this situation must be considered as ‘unphysical’. 

As for the possibility of having many-step solutions of the fixed-point equations 
(2.12) and (2.13), the generalization of the above-considered approach is straightforward, 
although technically it is much more cumbersome. On the other hand, the direct numerical 
observation of the RG trajectories for the case of several steps in the initial function g ( x )  is 
still rather simple. Such an analysis convincingly demonstrates that whatever the starting 
conditions are, one always ends up in the one-step fixed point (2.19), where the value of 
the parameter xo is the coordinate of the ‘right-most’ step in the initial configuration of the 
function g(x ) .  

It should be stressed here that, within the present pure RG considerations, the value of 
the parameter xo which defines the fixed points, remains arbitrary. In this sense, one can 
say that in the problem under consideration there exists a whole line of fixed points instead 
of the unique universal one. Formally, the value of the parameter xo which characterizes a 
given fixed point is defined by the initial conditions of the RG equations, and in this sense 
one could argue that the critical behaviour in systems with such disorder is not universal. 
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Another painful problem is to elucidate what is going on if the value of the parameter 
xo happens to be in the 'instability region' x , ( p )  < xo < 1. Formally, in this case the RG 
trajectories go to infinity, and it means that one has to take into account the next-order RG 
terms, which hopefully could stabilize the situation, just as they do for the king ( p  = 1) 
case [3]. We leave these problems for future analysis. 

Consider now what the consequences of the existence of the above one-step RSB fixed 
point are for the critical exponents. The RG equations for the mass term of the Hamiltonian 
in (2.3) are 

(2.21) 

This is a general (one-loop) RG equation for an arbitrary mass matrix h b .  In DUI case the 
initial matrix is diagonal: rn& = 0) = ?06&, and it  remains diagonal (in the higher orders 
of the RG as well) whatever RSB takes place in the interaction matrix gab. This is just a 
general consequence of the absence of fields which would break the symmetry @ + -@. 
At the one-step RSB fixed point (2.19) for the rescaling of the (diagonal) mass term one gets 

(2.22) 

According to the standard scaling relations for the critical exponent of the correlation length 
one finds 

(2.23) 

Correspondingly, for the critical exponent of the specific heat: 01 = 2- ( ~ - - E ) v ,  one obtains 

, (4 - P)(4  - pxo) 
16(p - 1) - p x o ( p  + 8) ' 

( I ( X 0 )  = - - - E  

Thus, depending on the value of the parameter xg one finds a whole spectrum of  the 
critical exponents. In particular, the possible values of the specific heat critical exponent 
appear to be in the following band: 

(2.25) 

The upper bound for 01(xo) is achieved in the RS limit xg + 0, and it coincides with the 
usual RS result [2]. On the other hand, as xo tends to the 'border of stability' x , ( p )  of the 
one-step RSB fixed point, formally the specific heat critical exponent tends to minus infinity. 

Note that, as usual, to obtain the leading fluctuation correction to the critical exponent 
of the correlation functions (usually called q )  one has to study the RG fixed points in the 
next-order (---E*) approximation. 

3. Possible scenario for spontaneous RSB 

In this section we will present qualitative arguments showing how RSB perturbations could 
be spontaneously generated in the random-bond model. For simplicity we set p = 1. We 
start by considering the partition function for a fixed configuration of Sr(x): 

Z[Sr]  = D@(x)exp{-H[@; 8 r l )  (3.1) s 
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where 

For a given realization Sr(x), the saddle-point equation, 

- A d W  + ( r  - S r ( x ) ) g ( x )  + g@(xI3  = 0 (3.3) 

has many Iocal minima solutions. We denote.such a local solution by $ r ( j ) ( x )  with 
i = I ,  2 , .  . .NO. If the size LO of an 'island' where Sr(x) z r is not too small, then 
the value of q ( i ) ( x )  in this 'island' should be - rtJ(Sr(x) - r)/g, where S s ( x )  should 
now be interpreted as the value of 6r averaged over the region of size Lo; since we are 
interested in the critical region with r << f i  we set 7 = 0 below for convenience, but its 
re-instatement is obvious. Such 'islands' occur at a certain finite density per unit volume. 
Thus the number of such local solutions, No, is macroscopic: NO = K V ,  where V is the 
volume of the system and K is a constant. An approximate global extrema1 solution Q ( x )  is 
constructed as the union of all these local solutions without regard for interactions between 
'islands'. Each local solution can occur with either sign, since we are dealing with the 
disordered phase: 

U V  

Q")[x;  sr(x) l  = C q $ ' " ( x )  (3.4) 
i = l  

where each ai = f l .  Accordingly, the total number of global solutions must be 2Kv.  
We denote these solutions by @ " ) [ x ;  S s ( x ) l ,  where 01 = I .  2,. . . , K = 2". With this 
type of symbol we later write simply Sr for Sr(x).) As we mentioned, it seems unlikely 
that an integration over fluctuations around @ ( x )  = 0 will include the contributions from 
the configurations of &r) which are near a U+), since @(x)  is 'beyond a barrier', so to 
speak. Therefore, it seems appropriate to include separately the contributions from small 
fluctuations about each of the many @(")[x;  ST]. Thus we have to sum over the K global 
minimum solutions (non-perturbative degrees of freedom) Q(')[x; Sr] and also to integrate 
over 'smooth' fluctuations v ( x )  around them: 

where 

(3.5) 

Next we carry out the appropriate average over quenched disorder. To do this, we 
need to average the nth (n --f 0) power of the partition function. This is accomplished by 
introducing the replicated partition function, Z,, as 
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where the subscript a is a replica index and 

where @ ( x )  stands for @ [ x ,  Sr]. 
It is obviously hopeless to try to make a systematic evaluation of this replicated partition 

function. The global solutions O(" are complicated implicit functions of Sr(x). These 
quantities have fluctuations of two different types. In the first instance, they depend on the 
stochastic variables Ss(x) .  But even when the & ( x )  are completely fixed, @ @ ) ( x )  will 
depend on LY (which labels the possible ways of constructing the global minimum out of the 
choices for the signs ( U )  of the local minima). A crude way of treating this situation is to 
regard the local solutions @ ( ' ) ( x )  as if they were random variables, even though Sr(x) has 
been specified. This randomness, which one can see is not all that different from that which 
exists in a spin glass, is the crucial one which we claim may lead to RSB. Accordingly, we 
no longer bother to keep track explicitly of the fluctuations in @@)(x )  due to its dependence 
on B T ( x ) .  Instead, we introduce a distribution function for @ ( x ) .  The simplest and the most 
natural distribution function is the Gaussian one: 

= exp(-z 1 [dDx[O") (x ) '  - @ o ( x ) * ] * )  
(3.9) 

where @o(x) = m, A is a parameter, which in principle should be defined through 
the original parameters g and U, and @&) is the value of given by (3.4) when @(' ) (x )  
is replaced by @o. The above distribution function exhibits two Gaussian maxima (with a 
mean square width equal to A) around the values +- in the 'islands', over which, 
on average, & ( x )  z 0. The width A reflects the distribution in the magnitude of @(' ) (x )  
which results from distant 'islands' fluctuating between their 'up' and 'down' states. 

Since the distribution (3.9) is symmetric with respect to the signs of the @(c), the term 
O " ( ~ ) q ~ ( x ) ~  in the partition function (3.8) can produce only interactions of the order q6. 
which are irrelevant for the critical properties. Therefore, this term can be safely omitted. 
Using the equation (3.3) for the energy in a given minimum one easily gets 

Then, for the partition function 2, one obtains 

(3.11) 

The non-trivial RSB effects we are looking for come from the integration in the vicinity 
of the points @ i ( x )  = f@o(x).  Assuming that the parameter A is small enough, one can 
redefine @"(x)' = @ o ( x ) * +  z.(x). 
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Then, for the part of the partition function which contains the integration over & ( x )  
one obtains 

(3.12) 

At this stage the problem (3.12) seems to be similar to that of the random energy model 
(REM) [121. Leaving apart the details of the rigorous consideration, one can obtain the 
correct solution for this problem in the framework of the following simplified heuristic 
procedure. Each term in the exponent of the partition function (3.12) is the sum of n values 
(z.,]'s chosen out of the total K = 2'" ones. From the solution of the REM it is seen that 
the leading contribution to the partition function comes from the configurations in which 
in the summations z- one takes n/xo different aY,'s, repeated xo times. Here xo is 
a parameter originally defined in the interval 1 6 xo < n, which (as usual in the replica 
formalism) turns into 1 > .TO > 0 in the limit n + 0. This parameter has to be fixed by 
extremizing the free energy. If such an extremum is achieved for xo = 1, then one gets the 
RS solution, otherwise the system appears to be in the one-step RSB state. 

According to the above ansatz for the partition function (3.12) one gets 

(3.13) 

Here (2yv)"/xo is the combinatoric entropy factor, and & = - $g. 
After simple algebra one obtains 

Coming back to the initial problem of integration over the fluctuations ~ ( x ) ,  equation (3.7), 
one finds that the second term in the exponent (3.14) gives an irrelevant shift of the mass 
term in the Hamiltonian H [ ( o ( x ) ] ,  while the first term in (3.14) provides the RSB structure 
of the matrix gab in the interaction term: 

(3.15) 

The matrix gob appears to have onestep RSB block structure described by the parameters 
(in notations of the section 2): 

2g2A' g1 = -U - 2 'A' go = -U. (3.16) 

Since g, U and A' are all positive by definition, one finds the following restrictions on 
2g 

i=g-u--9 

the values of the interaction parameters: go < 0, gl < 0, gl < go and z gl. 
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In the original REM problem LIZ], after the partition function is calculated, the parameter 
xo is fixed by extremizing the resultant free energy with respect to xo. Here the parameter xo 
enters into the further problem of integration over fluctuations which can be done in terms 
of the RG procedure. However, in terms of the RG technique one usually gets the results 
only for the singular part of the free energy, which is actually small (in 5 )  compared to the 
whole free energy. All that makes the problem of fixing the parameter xo rather non-trivial. 

It should be stressed, however. that the aim of the considerations of this section was 
to identify the physical mechanism which may, in principle, give rise to RSB perturbations 
whose treatment then follows from the usual RG calculations of the critical behaviour. It 
will be very difficult to make our arguments really precise. It is clear, in view of the 
somewhat slippery assumptions made above, that the actual contribution to the interactions 
of the fluctuating fields, coming from the non-perturbative degrees of freedom, could have 
an even more sophisticated RSB structure, than the simple one-step form obtained above. 
However, the main point of the present discussion was to demonstrate that, as far as the 
effective interactions of the fluctuating fields are concerned, the RSB perturbations could 
exist in the critical region. To what extent such RSB perturbations are relevant for the 
critical properties, can then be analysed (as we have done) in terms of the traditional RG 
approach. The results of section 2 clearly demonstrate that whenever the weak disorder is 
relevant (i.e. if the specific heat of the pure system is positive), and if spontaneous RSB 
occurs, then the the critical behaviour is modified in a dramatic way. 

4. Discussion and conclusions 

In this section we summarize our conclusions conceming the random bond p-component 
Heisenberg ferromagnet and discuss briefly some remaining issues. 

(i) The traditional renormahation-group fixed points [2,3] in the weakly random 
ferromagnet for the case when randomness is relevant are only stable within the space 
of replica-symmetric potentials. Therefore, the corresponding results for the critical 
exponents and other critical properties, can be assumed to be correct only as long a 
replica-symmetry breaking does not occur spontaneously. When randomness is not 
relevant, our analysis reduces to the standard one [Z]. 

(ii) Spontaneous replica-symmetry breaking has a dramatic effect on the renormalization- 
group flows and on the critical properties. At first order in E and for p not close to 1 (the 
Ising limit), the stable fixed point corresponds to one-step replica-symmetry breaking, in 
close analogy with the random energy model 1121. Presumably a calculation at higher 
order in e would lead to predictions for how the correlation functions would reflect a 
breaking of replica symmetry. 

(iii) At first order in t ,  there is an instability regon near p = 1 where we find no stable 
fixed point in the presence of replica-symmetry breaking. This result is in close analogy 
to the known result in the absence of replica-symmetry breaking, namely that only at 
two-loop order does one recover a stable fixed point [3] not present in first order 121. 

(iv) The replica-symmetry broken fixed point is characterized by a parameter xo whose value 
is not fixed in the order to which we work here. Accordingly, two main possibilities 
exist. In the first case, the value of this parameter may be determined in higher order in 
e ,  in which case one would have universal exponents, amplitude ratios, etc, as usual for 
a critical point. In the second case, one would have continuously variable exponents and 
a corresponding lack of universality. We have no idea what aspects of the randomness, 
when varied, would lead to variation in the critical exponents. 
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(v) A key question, which remains unanswered, is whether or not in the case of arbirrarily 
weak randomness our model has spontaneous replica-symmetry breaking. We have 
given a scenario by which replica symmetry can he spontaneously broken by interactions, 
VLP, between the perturbative fluctuations (usually treated within a renormalization 
group context) and fluctuations about local mean field solutions (ignored in previous 
treatments). In this scenario we relate the partition function due to fluctuations about 
local mean-field solutions to the random energy model [IZ]. The crucial question, which 
we cannot answer, is whether VLP is large enough that the analogous random energy 
model is in its replica symmetry broken phase or not. So, it is possible that there is 
a critical strength in the randomness, below which replica-symmetry breaking does not 
occur. 

(vi) We note that this replica-symmetry breaking is not the same as that found in spin 
glasses. Spin-glass order arises from the onset of finite Q , b ( x )  = (@a((x)@b(X) )  - 
( @ a ( X ) ) ( $ $ b ( X ) ) ; a  J: b, and RSB from instabilities in h'fobcd aZF/aQ,baQ,d in the 
replicon (replica non-symmetric) channel 1131. Then, at least for the infinite-range 
model, Qyb develops the hierarchical dependence on replica indices obtained by Parisi 
1141. Although in the present problem we do find a Parisi-like RSB structure for the 
coupling gob, it does not lead to a non-zero Edwards-Anderson order parameter. In 
other words, we have here identified a weaker type of RSB in which the hierarchy of 
valleys in phase space are not deep enough to cause freezing, but which nevertheless 
can influence critical fluctuations. 

(vii) If there is RSB in the founh-order potential, one could identify a phase with a different 
symmetry than the conventional paramagnetic phase, and thus there would have to be a 
temperature TUB at which this change in symmetry occurs. Although we do not have a 
detailed calculation of such atransition, it might occur when 7 becomes comparable with 
the fluctuation range fi  of 85, since in this case the islands where the local temperature 
is below T, shrink, become more separated and the interaction between them weakens 
significantly. This scaling as fi  of the region relevant for RSB correlates with that 
believed to characterise Griffiths effects [15]. The usual Griffiths problem takes J,j to 
be bounded between J, *U,  rather than with Gaussian distribution, but we believe the 
two situations are qualitatively similar with respect to the aspects discussed here. If that 
is so, then the present paper represents a suggestion of how the Griffithr phenomenon 
may affect perturbative contributions which are amenable to RG methods. 

(viii) One may mention related work. While the present paper was in preparation we learned 
about similar RSB instability in the RG flows in the 2D random field XY model 1161. 
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